Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network
نویسندگان
چکیده
Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated.
منابع مشابه
Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...
متن کاملDevelopment of 3D Microvascular Networks Within Gelatin Hydrogels Using Thermoresponsive Sacrificial Microfibers.
A 3D microvascularized gelatin hydrogel is produced using thermoresponsive sacrificial poly(N-isopropylacrylamide) microfibers. The capillary-like microvascular network allows constant perfusion of media throughout the thick hydrogel, and significantly improves the viability of human neonatal dermal fibroblasts encapsulated within the gel at a high density.
متن کاملProgrammable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences.
The ability to regulate cell-material interactions is important in various applications such as regenerative medicine and cell separation. This study successfully demonstrates that the binding states of cells on a hydrogel surface can be programmed by using hybridized aptamers and triggering complementary sequences (CSs). In the absence of the triggering CSs, the aptamers exhibit a stable, hybr...
متن کاملRobust Self-Healing Hydrogels Assisted by Cross-Linked Nanofiber Networks
Given increasing environmental and energy issues, mimicking nature to confer synthetic materials with self-healing property to expand their lifespan is highly desirable. Just like human skin recovers itself upon damage with the aid of nutrient-laden blood vascularization, designing smart materials with microvascular network to accelerate self-healing is workable but continues to be a challenge....
متن کاملTransmittance and Reflectance Studies of Thermotropic Material for a Novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ System
A novel Building Integrated Concentrating Photovoltaic (BICPV) Smart Window has been designed and developed as a next generation intelligent window system. In response to climatic conditions, the smart window varies solar light transmission into the building for provision of light and heat with the reflection of light to the photovoltaic (PV) for electricity generation. This unique function is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013